10 Resultados encontrados para "Archivo:Critical_orbits_f(z)_=z^5_ (0.8 0.8)*z^4_ _z.png".

Archivo:Critical orbits f(z) =z^5 +(0.8+0.8)*z^4 + z.png

net/web2/biomates */ draw2d( title = "All critical orbits for f(z)=z^5 +(0.8+0.8*i)*z^4 + z", terminal = png, user_preamble = "set size square", /* 360/26=13...


Archivo:Critical orbit f(z) = z*z+ 0.28+0.0113*i.png

net/web2/biomates */ draw2d( title = concat("Critical orbit for f(z)=z^2 +", string(c)), terminal = png, user_preamble = "set size square", /* */ file_name...


Archivo:Critical orbit f(z) = z*z + 0.2796319260869258 + 0.01190630276725968 *i.png

net/web2/biomates */ draw2d( title = concat("Critical orbit for f(z)=z^2 +", string(c)), terminal = png, user_preamble = "set size square; set key left...


Archivo:Critical orbit f(z) = z*z+c and c=-0.749413589136570+0.015312826507689*i.png

concat("Critical orbit for f(z)=z^2 +", string(c)), terminal = png, user_preamble = "set size square", /* */ file_name = concat(path ,string(iLength),"_8")...


Archivo:Critical Orbit 0;3,2,1000,1....png

BY-SA 3.0 Creative Commons Attribution-Share Alike 3.0 truetrue /* Computes and draw : - period 7 indifferent orbit z: z=f^n(z) - critical orbit - center...


Archivo:Parabolic orbits insidse upper main chessboard box for f(z) = z^2 +0.25.svg

z f = 1 / 4 {\displaystyle z_{f}=1/4} ( here big blue dot) then compute/draw orbits: critical orbit ( images of critical point = forward iteration of...


Archivo:Dynamical plane with branched periodic external ray 0 for map f(z) = z*z + 0.35.png

two vertical segments from critical point z=0 towards it's two preimages : a(z) = f^-1(z) and b(z) = -a(z). So it is: [a(z), -a] each (sub)segment of...


Archivo:Parabolic critical orbit for internal angle one fifth.png

block( [z,orbit], z:0, /* first point = critical point z:0+0*%i */ orbit:[z], for i:1 thru iMax step 1 do ( z:expand(f(z,c)), orbit:endcons(z,orbit)), return(orbit)...


Archivo:Parabolic critical orbit of rational function ( Blaschke fraction).png

English Parabolic critical orbit of rational function ( Blaschke fraction) f(z) = rho * z^2 * (z-3)/(1-3*z) where rho = -0.6170144002709304 +0.7869518599370003*%i...


Archivo:Dynamical plane with branched periodic external ray 0 for map f(z) = z*z + 0.35.svg

bifurcation points): r0: external ray 0 goes from (+) infinity along critical orbit towards critical point z=0 ( horizontal segment). Here bifurcates...